Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Adv Healthc Mater ; : e2304122, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563494

RESUMEN

For the past 70 years, lithium has been used as a mood stabilizer for the treatment of bipolar disorder. The toxicity of lithium and its narrow therapeutic window has been known for decades. Close monitoring of lithium concentration in biofluids and adjustment of drug dosage can minimize the devastating side effects, such as permanent kidney and neurological damage. Despite this, we still do not have point-of-care tools that can accurately measure lithium levels in biofluids for frequent monitoring. This work presents LiFT (a lithium fiber-based test), the first low-cost electrochemical sensor that can measure lithium in human saliva and urine with FDA-required accuracy. LiFT revolutionizes the management of lithium therapy by providing an inexpensive yet accurate and simple-to-operate lithium sensor for frequent at-home testing for early identification of lithium toxicity and rapid intervention. The low cost and high accuracy of LiFT were enabled through an innovative design and the use of ubiquitous materials such as yarn and carbon black for fabrication. LiFT measures Li+ through potentiometric recognition using a lithium selective sensing membrane that is deposited on the ink-coated yarn. we obtained a detection limit of 0.97 M with a sensitivity of 59.07±1.25 mV/decade for the Li+ sensor in deionized water. Moreover, our sodium correction extended LiFT's linear range in urine and saliva to 0.5 mM. our LiFT platform sends the test results to the patient's smartphone, which subsequently could be shared with the patient's healthcare provider to expedite diagnosis and prevention of acute lithium toxicity. This article is protected by copyright. All rights reserved.

2.
Small ; : e2311745, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587168

RESUMEN

Choline is an essential micronutrient for infants' brain development and health. To ensure that infants receive the needed daily dose of choline, the U.S. Food and Drug Administration (FDA) has set requirements for choline levels in commercialized infant formulas. Unfortunately, not all families can access well-regulated formulas, leading to potential inadequacies in choline intake. Economic constraints or difficulties in obtaining formulas, exacerbated by situations like COVID-19, prompt families to stretch formulas. Accurate measurement of choline in infant formulas becomes imperative to guarantee that infants receive the necessary nutritional support. Yet, accessible tools for this purpose are lacking. An innovative integrated sensor for the periodic observation of choline (SPOOC) designed for at-home quantification of choline in infants' formulas and milk powders is reported. This system is composed of a choline potentiometric sensor and ionic-liquid reference electrode developed on laser-induced graphene (LIG) and integrated into a spoon-like device. SPOOC includes a micro-potentiometer that conducts the measurements and transmits results wirelessly to parents' mobile devices. SPOOC demonstrated rapid and accurate assessment of choline levels directly in pre-consuming infant formulas without any sample treatment. This work empowers parents with a user-friendly tool for choline monitoring promoting informed nutritional decision-making in the care of infants.

3.
Healthcare (Basel) ; 11(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239647

RESUMEN

Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36901051

RESUMEN

This study aimed to evaluate a clothing prototype that incorporates sensors for the evaluation of pressure, temperature, and humidity for the prevention of pressure injuries, namely regarding physical and comfort requirements. A mixed-method approach was used with concurrent quantitative and qualitative data triangulation. A structured questionnaire was applied before a focus group of experts to evaluate the sensor prototypes. Data were analyzed using descriptive and inferential statistics and the discourse of the collective subject, followed by method integration and meta-inferences. Nine nurses, experts in this topic, aged 32.66 ± 6.28 years and with a time of profession of 10.88 ± 6.19 years, participated in the study. Prototype A presented low evaluation in stiffness (1.56 ± 1.01) and roughness (2.11 ± 1.17). Prototype B showed smaller values in dimension (2.77 ± 0.83) and stiffness (3.00 ± 1.22). Embroidery was assessed as inadequate in terms of stiffness (1.88 ± 1.05) and roughness (2.44 ± 1.01). The results from the questionnaires and focus groups' show low adequacy as to stiffness, roughness, and comfort. The participants highlighted the need for improvements regarding stiffness and comfort, suggesting new proposals for the development of sensors for clothing. The main conclusions are that Prototype A presented the lowest average scores relative to rigidity (1.56 ± 1.01), considered inadequate. This dimension of Prototype B was evaluated as slightly adequate (2.77 ± 0.83). The rigidity (1.88 ± 1.05) of Prototype A + B + embroidery was evaluated as inadequate. The prototype revealed clothing sensors with low adequacy regarding the physical requirements, such as stiffness or roughness. Improvements are needed regarding the stiffness and roughness for the safety and comfort characteristics of the device evaluated.


Asunto(s)
Úlcera por Presión , Humanos , Temperatura , Diseño de Equipo , Examen Físico , Vestuario
5.
Analyst ; 147(19): 4249-4256, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993403

RESUMEN

The realization of electrochemical nucleic acid amplification tests (NAATs) at the point of care (POC) is highly desirable, but it remains a challenge given their high cost and lack of true portability/miniaturization. Here we show that mass-produced, industrial standardized, printed circuit boards (PCBs) can be repurposed to act as near-zero cost electrodes for self-assembled monolayer-based DNA biosensing, and further integration with a custom-designed and low-cost portable potentiostat. To show the analytical capability of this system, we developed a NAAT using isothermal recombinase polymerase amplification, bypassing the need of thermal cyclers, followed by an electrochemical readout relying on a sandwich hybridization assay. We used our sensor and device for analytical detection of the toxic microalgae Ostreopsis cf. ovata as a proof of concept. This work shows the potential of PCBs and open-source electronics to be used as powerful POC DNA biosensors at a low-cost.


Asunto(s)
Técnicas Biosensibles , Técnicas de Amplificación de Ácido Nucleico , ADN/genética , Electrónica , Recombinasas
6.
Adv Exp Med Biol ; 1379: 553-590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35761007

RESUMEN

In recent years, we have seen major advances in the field of liquid biopsy and its implementation in the clinic, mainly driven by breakthrough developments in the area of molecular biology. New developments have seen an integration of microfluidics and also biosensors in liquid biopsy systems, bringing advantages in terms of cost, sensitivity and automation. Without a doubt, the next decade will bring the clinical validation and approval of these combined solutions, which is expected to be crucial for the wide implementation of liquid biopsy systems in clinical routine.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Pruebas de Coagulación Sanguínea , Biopsia Líquida
7.
Cancers (Basel) ; 13(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803738

RESUMEN

Currently, conventional pre-clinical in vitro studies are primarily based on two-dimensional (2D) cell culture models, which are usually limited in mimicking the real three-dimensional (3D) physiological conditions, cell heterogeneity, cell to cell interaction, and extracellular matrix (ECM) present in living tissues. Traditionally, animal models are used to mimic the 3D environment of tissues and organs, but they suffer from high costs, are time consuming, bring up ethical concerns, and still present many differences when compared to the human body. The applications of microfluidic-based 3D cell culture models are advantageous and useful as they include 3D multicellular model systems (MCMS). These models have demonstrated potential to simulate the in vivo 3D microenvironment with relatively low cost and high throughput. The incorporation of monitoring capabilities in the MCMS has also been explored to evaluate in real time biophysical and chemical parameters of the system, for example temperature, oxygen, pH, and metabolites. Electrochemical sensing is considered as one of the most sensitive and commercially adapted technologies for bio-sensing applications. Amalgamation of electrochemical biosensing with cell culture in microfluidic devices with improved sensitivity and performance are the future of 3D systems. Particularly in cancer, such models with integrated sensing capabilities can be crucial to assess the multiple parameters involved in tumour formation, proliferation, and invasion. In this review, we are focusing on existing 3D cell culture systems with integrated electrochemical sensing for potential applications in cancer models to advance diagnosis and treatment. We discuss their design, sensing principle, and application in the biomedical area to understand the potential relevance of miniaturized electrochemical hybrid systems for the next generation of diagnostic platforms for precision medicine.

8.
Small ; 17(2): e2005320, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33230918

RESUMEN

Membrane enclosed intracellular compartments have been exclusively associated with the eukaryotes, represented by the highly compartmentalized last eukaryotic common ancestor. Recent evidence showing the presence of membranous compartments with specific functions in archaea and bacteria makes it conceivable that the last universal common ancestor and its hypothetical precursor, the protocell, may have exhibited compartmentalization. To the authors' knowledge, there are no experimental studies yet that have tested this hypothesis. They report on an autonomous subcompartmentalization mechanism for protocells which results in the transformation of initial subcompartments to daughter protocells. The process is solely determined by the fundamental materials properties and interfacial events, and does not require biological machinery or chemical energy supply. In the light of the authors' findings, it is proposed that similar events may have taken place under early Earth conditions, leading to the development of compartmentalized cells and potentially, primitive division.


Asunto(s)
Células Artificiales , Bacterias , Células Eucariotas
9.
Langmuir ; 35(32): 10286-10298, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31369272

RESUMEN

In this study, we have systematically investigated the formation of molecular phospholipid films on a variety of solid substrates fabricated from typical surface engineering materials and the fluidic properties of the lipid membranes formed on these substrates. The surface materials comprise of borosilicate glass, mica, SiO2, Al (native oxide), Al2O3, TiO2, ITO, SiC, Au, Teflon AF, SU-8, and graphene. We deposited the lipid films from small unilamellar vesicles (SUVs) by means of an open-space microfluidic device, observed the formation and development of the films by laser scanning confocal microscopy, and evaluated the mode and degree of coverage, fluidity, and integrity. In addition to previously established mechanisms of lipid membrane-surface interaction upon bulk addition of SUVs on solid supports, we observed nontrivial lipid adhesion phenomena, including reverse rolling of spreading bilayers, spontaneous nucleation and growth of multilamellar vesicles, and the formation of intact circular patches of double lipid bilayer membranes. Our findings allow for accurate prediction of membrane-surface interactions in microfabricated devices and experimental environments where model membranes are used as functional biomimetic coatings.

10.
Lab Chip ; 18(15): 2279-2290, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987296

RESUMEN

Potentiometric sensing of ions with ion-selective electrodes (ISEs) is a powerful technique for selective and sensitive measurement of ions in complex matrices. The application of ISEs is generally limited to laboratory settings, because most commercially available ISEs and reference electrodes are large, delicate, and expensive, and are not suitable for point-of-use or point-of-care measurements. This work utilizes cotton thread as a substrate for fabrication of robust and miniaturized ISEs that are suitable for point-of-care or point-of-use applications. Thread-based ISEs selective for Cl-, K+, Na+, and Ca2+ were developed. The cation-selective ISEs were fabricated by coating the thread with a surfactant-free conductive ink (made of carbon black) and then coating the tip of the conductive thread with the ion-selective membrane. The Cl- ISE was fabricated by coating the thread with an Ag/AgCl ink. These sensors exhibited slopes (of electrical potential vs. log concentration of target ion), close to the theoretically-expected values, over four orders of magnitude in concentrations of ions. Because thread is mechanically strong, the thread-based electrodes can be used in multiple-use applications as well as single-use applications. Multiple thread-based sensors can be easily bundled together to fabricate a customized sensor for multiplexed ion-sensing. These electrodes require volumes of sample as low as 200 µL. The application of thread-based ISEs is demonstrated in the analysis of ions in soil, food, and dietary supplements (Cl- in soil/water slurry, K+ and Na+ in coconut water, and Ca2+ in a calcium supplement), and in detection of physiological electrolytes (K+ and Na+ in blood serum and urine, with sufficient accuracy for clinical diagnostics).

11.
Anal Chem ; 90(10): 6240-6246, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29658268

RESUMEN

This paper describes the design and characterization of an open-source "universal wireless electrochemical detector" (UWED). This detector interfaces with a smartphone (or a tablet) using "Bluetooth Low Energy" protocol; the smartphone provides (i) a user interface for receiving the experimental parameters from the user and visualizing the result in real time, and (ii) a proxy for storing, processing, and transmitting the data and experimental protocols. This approach simplifies the design, and decreases both the size and the cost of the hardware; it also makes the UWED adaptable to different types of analyses by simple modification of the software. The UWED can perform the most common electroanalytical techniques of potentiometry, chronoamperometry, cyclic voltammetry, and square wave voltammetry, with results closely comparable to benchtop commercial potentiostats. Although the operating ranges of electrical current and voltage of the UWED (±1.5 V, ±180 µA) are more limited than most benchtop commercial potentiostats, its functional range is sufficient for most electrochemical analyses in aqueous solutions. Because the UWED is simple, small in size, assembled from inexpensive components, and completely wireless, it offers new opportunities for the development of affordable diagnostics, sensors, and wearable devices.

12.
Soft Robot ; 5(2): 133-137, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29189100

RESUMEN

This article demonstrates a pneumatically actuated soft robot capable of navigating the inside of a tube. This robot was built using buckling pneumatic actuators (vacuum-actuated muscle-inspired pneumatic structures, or VAMPs). The tube climber can navigate through a tube with turns, inclines, and varying diameters. The robot is also able to remove obstacles (of more than 10 times its own weight) from tubes to perform a clearing function. It maintains climbing and clearing performance in wet conditions and under water. The tube climber is lightweight and completely soft and thus has the potential to be collaborative (i.e., work with humans) and also to interact safely with delicate environments.

13.
Sci Robot ; 3(16)2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33141749

RESUMEN

Almost all pneumatic and hydraulic actuators useful for mesoscale functions rely on hard valves for control. This article describes a soft, elastomeric valve that contains a bistable membrane, which acts as a mechanical "switch" to control air flow. A structural instability-often called "snap-through"-enables rapid transition between two stable states of the membrane. The snap-upward pressure, ΔP 1 (kilopascals), of the membrane differs from the snap-downward pressure, ΔP 2 (kilopascals). The values ΔP 1 and ΔP 2 can be designed by changing the geometry and the material of the membrane. The valve does not require power to remain in either "open" or "closed" states (although switching does require energy), can be designed to be bistable, and can remain in either state without further applied pressure. When integrated in a feedback pneumatic circuit, the valve functions as a pneumatic oscillator (between the pressures ΔP 1 and ΔP 2), generating periodic motion using air from a single source of constant pressure. The valve, as a component of pneumatic circuits, enables (i) a gripper to grasp a ball autonomously and (ii) autonomous earthworm-like locomotion using an air source of constant pressure. These valves are fabricated using straightforward molding and offer a way of integrating simple control and logic functions directly into soft actuators and robots.

14.
Soft Robot ; 4(3): 183-190, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29182080

RESUMEN

This article describes a class of robots-"arthrobots"-inspired, in part, by the musculoskeletal system of arthropods (spiders and insects, inter alia). Arthrobots combine mechanical compliance, lightweight and simple construction, and inexpensive yet scalable design. An exoskeleton, constructed from thin organic polymeric tubes, provides lightweight structural support. Pneumatic joints modeled after the hydrostatic joints of spiders provide actuation and inherent mechanical compliance to external forces. An inflatable elastomeric tube (a "balloon") enables active extension of a limb; an opposing elastic tendon enables passive retraction. A variety of robots constructed from these structural elements demonstrate (i) crawling with one or two limbs, (ii) walking with four or six limbs (including an insect-like triangular gait), (iii) walking with eight limbs, or (iv) floating and rowing on the surface of water. Arthrobots are simple to fabricate and are able to operate safely in contact with humans.


Asunto(s)
Robótica/instrumentación , Animales , Artrópodos/fisiología , Fenómenos Biomecánicos , Elastómeros , Diseño de Equipo , Dispositivo Exoesqueleto , Movimiento , Polímeros
15.
Soft Robot ; 4(3): 297-304, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29182081

RESUMEN

This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

16.
Adv Mater ; 29(38)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28809064

RESUMEN

This paper describes electrically-activated fluidic valves that operate based on electrowetting through textiles. The valves are fabricated from electrically conductive, insulated, hydrophobic textiles, but the concept can be extended to other porous materials. When the valve is closed, the liquid cannot pass through the hydrophobic textile. Upon application of a potential (in the range of 100-1000 V) between the textile and the liquid, the valve opens and the liquid penetrates the textile. These valves actuate in less than 1 s, require low energy (≈27 µJ per actuation), and work with a variety of aqueous solutions, including those with low surface tension and those containing bioanalytes. They are bistable in function, and are, in a sense, the electrofluidic analog of thyristors. They can be integrated into paper microfluidic devices to make circuits that are capable of controlling liquid, including autonomous fluidic timers and fluidic logic.

17.
Nature ; 537(7622): 656-60, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27680939

RESUMEN

Networks of organic chemical reactions are important in life and probably played a central part in its origin. Network dynamics regulate cell division, circadian rhythms, nerve impulses and chemotaxis, and guide the development of organisms. Although out-of-equilibrium networks of chemical reactions have the potential to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic oscillations, the principles that enable networks of organic reactions to develop complex behaviours are incompletely understood. Here we describe a network of biologically relevant organic reactions (amide formation, thiolate-thioester exchange, thiolate-disulfide interchange and conjugate addition) that displays bistability and oscillations in the concentrations of organic thiols and amides. Oscillations arise from the interaction between three subcomponents of the network: an autocatalytic cycle that generates thiols and amides from thioesters and dialkyl disulfides; a trigger that controls autocatalytic growth; and inhibitory processes that remove activating thiol species that are produced during the autocatalytic cycle. In contrast to previous studies that have demonstrated oscillations and bistability using highly evolved biomolecules (enzymes and DNA) or inorganic molecules of questionable biochemical relevance (for example, those used in Belousov-Zhabotinskii-type reactions), the organic molecules we use are relevant to metabolism and similar to those that might have existed on the early Earth. By using small organic molecules to build a network of organic reactions with autocatalytic, bistable and oscillatory behaviour, we identify principles that explain the ways in which dynamic networks relevant to life could have developed. Modifications of this network will clarify the influence of molecular structure on the dynamics of reaction networks, and may enable the design of biomimetic networks and of synthetic self-regulating and evolving chemical systems.


Asunto(s)
Amidas/síntesis química , Modelos Químicos , Origen de la Vida , Compuestos de Sulfhidrilo/síntesis química , Amidas/química , Biomimética , Catálisis , Disulfuros/química , Ésteres/química , Evolución Química , Cinética , Estructura Molecular , Compuestos de Sulfhidrilo/química
18.
Anal Chem ; 88(12): 6326-33, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27243791

RESUMEN

This paper describes the design and fabrication of a "pop-up" electrochemical paper-based analytical device (pop-up-EPAD) to measure beta-hydroxybutyrate (BHB)-a biomarker for diabetic ketoacidosis-using a commercial combination BHB/glucometer. Pop-up-EPADs are inspired by pop-up greeting cards and children's books. They are made from a single sheet of paper folded into a three-dimensional (3D) device that changes shape, and fluidic and electrical connectivity, by simply folding and unfolding the structure. The reconfigurable 3D structure makes it possible to change the fluidic path and to control timing; it also provides mechanical support for the folded and unfolded structures that enables good registration and repeatability on folding. A pop-up-EPAD designed to detect BHB shows performance comparable to commercially available plastic test strips over the clinically relevant range of BHB in blood when used with a commercial glucometer that integrates the ability to measure glucose and BHB (combination BHB/glucometer). With simple modifications of the electrode and the design of the fluidic path, the pop-up-EPAD also detects BHB in buffer using a simple glucometer-a device that is more available than the combination BHB/glucometer. Strategies that use a "3D pop-up"-that is, large-scale changes in 3D structure and fluidic paths-by folding/unfolding add functionality to EPADs (e.g., controlled timing, fluidic handling and path programming, control over complex sequences of steps, and alterations in electrical connectivity) and should enable the development of new classes of paper-based diagnostic devices.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Técnicas Electroquímicas/métodos , Papel , Ácido 3-Hidroxibutírico/química , Biomarcadores/sangre , Cetoacidosis Diabética/diagnóstico , Técnicas Electroquímicas/instrumentación , Electrodos , Humanos , Límite de Detección , NAD/química , Sistemas de Atención de Punto
19.
Adv Mater ; 28(25): 5054-63, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27135652

RESUMEN

Paper microfluidics and printed electronics have developed independently, and are incompatible in many aspects. Monolithic integration of microfluidics and electronics on paper is demonstrated. This integration makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them.

20.
Angew Chem Int Ed Engl ; 55(19): 5727-32, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27059088

RESUMEN

Current methods of monitoring breathing require cumbersome, inconvenient, and often expensive devices; this requirement sets practical limitations on the frequency and duration of measurements. This article describes a paper-based moisture sensor that uses the hygroscopic character of paper (i.e. the ability of paper to adsorb water reversibly from the surrounding environment) to measure patterns and rate of respiration by converting the changes in humidity caused by cycles of inhalation and exhalation to electrical signals. The changing level of humidity that occurs in a cycle causes a corresponding change in the ionic conductivity of the sensor, which can be measured electrically. By combining the paper sensor with conventional electronics, data concerning respiration can be transmitted to a nearby smartphone or tablet computer for post-processing, and subsequently to a cloud server. This means of sensing provides a new, practical method of recording and analyzing patterns of breathing.


Asunto(s)
Monitoreo Fisiológico/métodos , Papel , Respiración , Electricidad , Ejercicio Físico , Humanos , Humedad , Monitoreo Fisiológico/economía , Monitoreo Fisiológico/instrumentación , Procesamiento de Señales Asistido por Computador , Teléfono Inteligente , Tecnología Inalámbrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...